Automatic image colorization is a particularly challenging problem. Due to the high illness of the problem and multi-modal uncertainty, directly training a deep neural network usually leads to incorrect semantic colors and low color richness. Existing transformer-based methods can deliver better results but highly depend on hand-crafted dataset-level empirical distribution priors. In this work, we propose DDColor, a new end-to-end method with dual decoders, for image colorization. More specifically, we design a multi-scale image decoder and a transformer-based color decoder. The former manages to restore the spatial resolution of the image, while the latter establishes the correlation between semantic representations and color queries via cross-attention. The two decoders incorporate to learn semantic-aware color embedding by leveraging the multi-scale visual features. With the help of these two decoders, our method succeeds in producing semantically consistent and visually plausible colorization results without any additional priors. In addition, a simple but effective colorfulness loss is introduced to further improve the color richness of generated results. Our extensive experiments demonstrate that the proposed DDColor achieves significantly superior performance to existing state-of-the-art works both quantitatively and qualitatively. Codes will be made publicly available.
translated by 谷歌翻译
Data uncertainty is commonly observed in the images for face recognition (FR). However, deep learning algorithms often make predictions with high confidence even for uncertain or irrelevant inputs. Intuitively, FR algorithms can benefit from both the estimation of uncertainty and the detection of out-of-distribution (OOD) samples. Taking a probabilistic view of the current classification model, the temperature scalar is exactly the scale of uncertainty noise implicitly added in the softmax function. Meanwhile, the uncertainty of images in a dataset should follow a prior distribution. Based on the observation, a unified framework for uncertainty modeling and FR, Random Temperature Scaling (RTS), is proposed to learn a reliable FR algorithm. The benefits of RTS are two-fold. (1) In the training phase, it can adjust the learning strength of clean and noisy samples for stability and accuracy. (2) In the test phase, it can provide a score of confidence to detect uncertain, low-quality and even OOD samples, without training on extra labels. Extensive experiments on FR benchmarks demonstrate that the magnitude of variance in RTS, which serves as an OOD detection metric, is closely related to the uncertainty of the input image. RTS can achieve top performance on both the FR and OOD detection tasks. Moreover, the model trained with RTS can perform robustly on datasets with noise. The proposed module is light-weight and only adds negligible computation cost to the model.
translated by 谷歌翻译
利用Stylegan的表现力及其分离的潜在代码,现有方法可以实现对不同视觉属性的现实编辑,例如年龄和面部图像的性别。出现了一个有趣而又具有挑战性的问题:生成模型能否针对他们博学的先验进行反事实编辑?由于自然数据集中缺乏反事实样本,我们以文本驱动的方式研究了这个问题,并具有对比语言图像预言(剪辑),这些(剪辑)甚至可以为各种反事实概念提供丰富的语义知识。与内域操作不同,反事实操作需要更全面地剥削夹包含的语义知识,以及对编辑方向的更微妙的处理,以避免被卡在局部最低或不需要的编辑中。为此,我们设计了一种新颖的对比损失,该损失利用了预定义的夹子空间方向,从不同的角度将编辑指向所需的方向。此外,我们设计了一个简单而有效的方案,该方案将(目标文本)明确映射到潜在空间,并将其与潜在代码融合在一起,以进行有效的潜在代码优化和准确的编辑。广泛的实验表明,我们的设计在乘坐各种反事实概念的目标文本驾驶时,可以实现准确,现实的编辑。
translated by 谷歌翻译
本文介绍了DCT-NET,这是一种新颖的图像翻译体系结构,可用于几张肖像风格。给定有限的样式示例($ \ sim $ 100),新的体系结构可以产生高质量的样式转移结果,具有先进的能力,可以合成高保真内容和强大的一般性来处理复杂的场景(例如,遮挡和配件)。此外,它可以通过一个由部分观察(即风格化的头)训练的优雅评估网络启用全身图像翻译。几乎没有基于学习的样式转移是具有挑战性的,因为由于仅由少数几个培训示例形成的偏见分布,学到的模型很容易在目标域中过度拟合。本文旨在通过采用“首先校准,稍后翻译”的关键思想来应对挑战,并以本地注重的翻译探索增强的全球结构。具体而言,所提出的DCT-NET由三个模块组成:一个内容适配器从源照片借用功能的先验来校准目标样本的内容分布;使用仿射变换来释放空间语义约束的几何扩展模块;以及通过校准分布产生的样品的质地翻译模块学习细粒的转换。实验结果证明了所提出的方法在头部风格化方面具有优势及其对具有自适应变形的完整图像翻译的有效性。
translated by 谷歌翻译
关于驾驶场景图像的语义细分对于自动驾驶至关重要。尽管在白天图像上已经实现了令人鼓舞的性能,但由于暴露不足和缺乏标记的数据,夜间图像的性能不那么令人满意。为了解决这些问题,我们提出了一个称为双图像自动学习过滤器(拨号过滤器)的附加模块,以改善夜间驾驶条件下的语义分割,旨在利用不同照明下驾驶场景图像的内在特征。拨盘滤波器由两个部分组成,包括图像自适应处理模块(IAPM)和可学习的引导过滤器(LGF)。使用拨号过滤器,我们设计了无监督和有监督的框架,用于夜间驾驶场景细分,可以以端到端的方式进行培训。具体而言,IAPM模块由一个带有一组可区分图像过滤器的小型卷积神经网络组成,可以自适应地增强每个图像,以更好地相对于不同的照明。 LGF用于增强分割网络的输出以获得最终的分割结果。拨号过滤器轻巧有效,可以在白天和夜间图像中轻松应用它们。我们的实验表明,Dail过滤器可以显着改善ACDC_Night和Nightcity数据集的监督细分性能,而它展示了有关无监督的夜间夜间语义细分的最新性能,在黑暗的苏黎世和夜间驾驶测试床上。
translated by 谷歌翻译
嘈杂的标签通常在现实世界数据中找到,这导致深神经网络的性能下降。手动清洁数据是劳动密集型和耗时的。以前的研究主要侧重于加强对嘈杂标签的分类模型,而对嘈杂标签的深度度量学习(DML)的鲁棒性仍然较少。在本文中,通过提出与DML的内存(棱镜)方法提出基于概率排名的实例选择来弥合这一重要差异。棱镜计算清洁标签的概率,并滤除潜在的噪声样本。具体地,我们提出了一种新方法,即Von Mises-Fisher分配相似性(VMF-SIM),通过估计每个数据类的VON MISES-FISHER(VMF)分布来计算这种概率。与现有的平均相似性方法(AVGSIM)相比,除了平均相似度之外,VMF-SIM还考虑每个类的方差。通过这种设计,所提出的方法可以应对挑战的DML情况,其中大多数样本是嘈杂的。在合成和现实世界嘈杂的数据集中的广泛实验表明,拟议的方法在合理的培训时间内实现了高达@ 1的精度高达8.37%的精度@ 1。
translated by 谷歌翻译
推断从单个图像的场景照明是计算机视觉和计算机图形中的必不可少的且挑战性的任务。通过回归代表照明参数或直接生成照明映射来估计照明。然而,这些方法通常遭受差的准确性和泛化。本文介绍了几何移动器的光(GMLight),一种采用回归网络和用于有效照明估计的生成投影仪的照明估计框架。我们根据几何光分布,光强度,环境术语和辅助深度参数化照明场景,这可以由回归网络估计。灵感来自地球移动器的距离,我们设计了一种新颖的几何动力损失,以指导光分布参数的准确回归。利用估计的光参数,生成投影机用现实的外观和高频细节合成全景照明图。广泛的实验表明,GALLIVEVES实现了准确的照明估计和卓越的保真度,在欣赏3D对象插入时。该代码可在\ href {https://github.com/fnzhan/illumination- istimation} {https://github.com/fnzhan/illumination-istimation}。
translated by 谷歌翻译
Driven by improved architectures and better representation learning frameworks, the field of visual recognition has enjoyed rapid modernization and performance boost in the early 2020s. For example, modern ConvNets, represented by ConvNeXt, have demonstrated strong performance in various scenarios. While these models were originally designed for supervised learning with ImageNet labels, they can also potentially benefit from self-supervised learning techniques such as masked autoencoders (MAE). However, we found that simply combining these two approaches leads to subpar performance. In this paper, we propose a fully convolutional masked autoencoder framework and a new Global Response Normalization (GRN) layer that can be added to the ConvNeXt architecture to enhance inter-channel feature competition. This co-design of self-supervised learning techniques and architectural improvement results in a new model family called ConvNeXt V2, which significantly improves the performance of pure ConvNets on various recognition benchmarks, including ImageNet classification, COCO detection, and ADE20K segmentation. We also provide pre-trained ConvNeXt V2 models of various sizes, ranging from an efficient 3.7M-parameter Atto model with 76.7% top-1 accuracy on ImageNet, to a 650M Huge model that achieves a state-of-the-art 88.9% accuracy using only public training data.
translated by 谷歌翻译
A step-search sequential quadratic programming method is proposed for solving nonlinear equality constrained stochastic optimization problems. It is assumed that constraint function values and derivatives are available, but only stochastic approximations of the objective function and its associated derivatives can be computed via inexact probabilistic zeroth- and first-order oracles. Under reasonable assumptions, a high-probability bound on the iteration complexity of the algorithm to approximate first-order stationarity is derived. Numerical results on standard nonlinear optimization test problems illustrate the advantages and limitations of our proposed method.
translated by 谷歌翻译
Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.
translated by 谷歌翻译